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A mechanism and a model of a ferroin-catalyzed oscillating chemical system are 
descrined. This reaction presents an excellent example of a far-from-equilibrium 
system that forms spatial and temporal dissipative structures. The model shows 
that while the well-stirred system has a unique and stable stationary state, the 
same reagent spread in a thin layer may form complex spatiotemporal paterns. 
Stationary periodic patterns of both small and large amplitude, standing waves, 
and inhomogeneous chaotic oscillations are found in the model. 
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1. I N T R O D U C T I O N  

The history of the discovery and investigation of chemical oscillations is 
closely connected with the name of I. Prigogine. He found the thermo- 
dynamic conditions necessary chemical oscillations to arise. {~'2l Then he 
developed a general concept of self-organization in far-from-equilibrium 
systems and suggested the term "dissipative structures," which is commonly 
accepted now as implying nonequilibrium structures of different nature. A 
number of models of self-organization were studied by him and the 
Brussels school. The Brusselator is the best known among these models 
and it has been very helpful in the general theoretical analysis of chemical 
oscillators. 

The reactions discovered by Belousov and initially studied by 
Zhabotinsky (BZ reaction) played a key role in experimentally proving 
that chemical oscillations really exist and show a great variety of dynamic 
regimes.13'4} 
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Self-sustained traveling concentration waves present one of the most 
interesting phenomena discovered in the BZ reaction. (5,v~ The chemical 
autowaves are usually studied in a BZ system catalyzed by Fe(phen)~ + ion 
(ferroin). However, experimental investigations of well-stirred systems have 
been mostly carried out in cerium-catalyzed reactions, either because of 
historic reasons or a belief that the cerium-catalized system is simpler. 

The F K N  scheme I*~ is commonly accepted as an adequate mechanism 
of the BZ reaction. However, the Oregonator model derived from an over- 
simplified version of the FKN scheme shows significant quantitative 
discrepancies with the experimental data obtained in the system catalyzed 
by the cerium ion. (9 ~2/ 

A mathematical model of the bromate-ferroin bromomalonic acid 
system has been developed recently on the basis of the FKN scheme for 
analysis of spatial phenomena. {~3) This model appears to describe quan- 
titatively well oscillations and waves studied in the experimentJ ~4~ 

One of the interesting problems in this field is to find experimentally 
the stationary periodic structures predicted by Turing. ~5~ Small-amplitude 
Turing patterns have been theoretically investigated in more detail than 
any other dissipative structure is reaction-diffusion systems. However, there 
has been no clear evidence that these structures have been observed in 
experiments with chemical systems. Our knowledge of the behavior of 
large-amplitude stationary patterns is also very limited. 

This paper presents a model of the ferroin-catalyzed BZ reaction and 
the analysis of small- and large-amplitude stationary periodic structures as 
well as standing waves and chaotic inhomogeneous oscillations arising in 
this model due to diffusion instabilities. 

2. M E C H A N I S M  A N D  M O D E L  OF THE B R O M A T E - F E R R O I N -  
B R O M O M A L O N I C  ACID  REACTION 

The chemical mechanism underlying the oscillations and excitability of 
the system is assumed to be accounted for by the skeleton scheme i25~ 

H + + HBrO2 + HBrO3 ~ HBrO + + BrO) + H20 (1) 

BrO2 + H + ~---HBrO + (2) 

Me,,+ + HBrO + ~_~ Mel,,+ 11+ + HBrO2 (3) 

2HBrO2 ~-~ HOBr + HBrO3 (4) 

H + + B r  + H B r O 2 ~ - 2 H O B r  (5) 

H + + B r -  + H O B r  ~ Br2+ H 2 0  (6) 
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H + + B r -  + HBrO3 

Me ('`+ ~)+ + CHBr(COOH)2 

H 20  q- "CBr(COOH )2 

HOBr + CHBr(COOH)2 

Br2 + CHBr(COOH)2 

HzO + CHBr(COOH)2 

HBrO2 + HOBr (7) 

Me n+ + H + + "CBr(COOH)2 (8) 

H + + B r -  + "COH(COOH)2 (9) 

CBr2(COOH )2 + H 2 0  (10) 

~- CBr2(COOH)2 + H + + Br -  (11 ) 

~-~ CHOH(COOH)2  + H + + B r -  (12) 

'COH(COOH)2 + CHBr(COOH)2 ~--- CHOH (CO O H )2  + "CBr(COOH) 

(13) 

Me ~''+ l)+ + ' C O H ( C O O H ) 2  ~- CO(COOH)2 + Me ''+ + H  + (14) 

CO(COOH)~ ~ O C H C O O H  + CO2 (15) 

The ferroin and cerium catalysts differ mainly in the value of the redox 
potential: for the Fe(phen)B+/Fe(phen) 3+ couple it equals 1.14 V and for 
the couple Ce3+/Ce 4+ it is 1.61 V. Therefore, in the cerium case the reverse 
reaction (3) is very significant, while reaction (8) can be regarded as 
irreversible and vice versa for the ferroin case. (9~1~ Scheme (1)-(15) does 
not provide a quantitative description of experimental results for the 
reaction catalyzed by cerium. (~3) For  the ferroin-catalyzed reaction the 
system of differential equations 

k =  k3 U ( C -  Z)  - k _ 3 X Z -  k l hoAX +  k I U 2  - 2k4ho X2 

- k s h o X Y  + kvhoA Y 

Y =  qk 9 R - kThoA Y - k s h o X Y  

2 = k 3 U ( C - Z ) - k  ~ X Z - k s B Z + k  8 h o R ( C - Z )  

(_7 = k 3 U(C - Z)  + k _3XZ  + 2kl h o A X -  2k_1 U 2 

k = k s B Z - k _ s h o ( C - Z ) R -  k9R 

(where X =  [HBrO2] ,  Y= [ B r - ] ,  Z =  [Fe(phen)33+], U =  [ H B r O ] ] ,  
R = [ 'CBr(COOH)z] ,  A = [HBrO3],  B = [CHBr(COOH)2] ,  C = 
[-Fe(phen)~ +] + [Fe(phen) 3+], and ho is the acidity function) 
corresponding to steps (1)-(15) can be reduced to a two-variable system 
with methods of singular perturbation theory. The variables of this reduced 
system are HBrO2 and Fe(phen)3 3+ . In scaled form the equations are 

e ~ T z = x ( l - x )  - 2q~ e, + ( l _ z) t- fl -ffT--fi= f ( x ,  z) 

dz z (16) 
- -  = x - c~ - g ( x ,  z )  
dr e ' +  ( l - z )  
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where 
X klA k4C 

x' z = c z ,   -k A2h o 

k4ksk 9 B k4k~2 B 2k4k 7 
A hg ' ' 

klA k 9 

k4C' k sCho 

q is a stoichiometric factor. Almost always the term e' can be neglected. 
Analysis of kinetic and thermodynamic experimental data provides the 
following set of rate constantsr 

kl = 100 M 2 sec-l, k 4 = 1.7 • 104 M -2 sec 1, k5 

ksk9 

k_s 
- 2 x l O  5Msec J, k t 2 = l •  6sec ~, 

= I 0 7 M  2sec 

q=0.5 

These values agree with other estimates. ~t2'~8 201 Model (16) is in good 
quantitative agreement with the experiments 
(Fig. 1). 

,? 
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Fig. L Oscillations in the bromate-ferroin-bromomalonic  acid system. ( - - )  Experiment; 
( - - )  the model. (Top) A=0.05 ,  B=0 .2 ,  C=0.001,  and h=2 .1 ,  and A=0 .05 ,  B=0.37 ,  
C=0.001,  h0=2.1;  (bottom) A =0.025, B=0 .2 ,  C=0.01 ,  and h = 2.5, and A =0.025, B=0 .4 ,  
C = 0.001, and h 0 = 2.5. 
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3. D ISSIPATIVE STRUCTURES IN THE M O D E L  OF THE 
FERROIN OSCILLATOR 

A d d i n g  d i f fus ion  t e rms  to  m o d e l  (16) p r o d u c e s  the  r eac t i on -d i f fu s ion  

sys tem 
x ,  = ( l / e ) f ( x ,  z)  + A x  

(17) 
z~ = g(x ,  z)  + ~c A z  

where  

tc = D z / D x ,  G = ( k 4 C D x / k ~ A 2 h o ) t / 2 P i  

(i = 1, 2, 3; r, are  spa t i a l  c o o r d i n a t e s ,  Pi a re  sca led  spa t i a l  c o o r d i n a t e s ) .  
F o r  t o=  1, m o d e l  (16),  (17)  desc r ibes  qu i t e  well  spa t i a l  s t ruc tu re s  

f o r m e d  by  t r ave l i ng  waves  (e.g., by  s ingle  a n d  m u l t i a r m e d  sp i ra l  waves )  
(Fig.  2). (14~ 

Fig. 2. Evolution of the cores of the single-, two-, and four-armed spirals in model (17). 
Time interval between the consecutive positions is 1.45 sec. A = 0.03, B = 0.3, C = 0.001, h 0 = 2. 
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Now it is interesting to seek the structures arising due to diffusion 
instablity of the homogeneous stationary state. For this purpose we should 
find the conditions under which system (16) is stable while system (17) is 
not. These are 

l O f .  Og 
(a) ~ ~x +-~zz < 0 

,,-af ag (b) - ~ + ~ > 0  

Since ~?g/~z is always negative, the Turing bifurcation is only possible for 
~ > 1  and Of/Ox>O. Values of the diffusion coefficients of HBrO2 and 
Fe(phen)~ + are not available, but since ferroin is a charged ion with a 
higher molecular weight than that of bromous acid, one may expect that 
the diffusibility of bromous acid exceeds that of ferroin, which means that 
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Fig. 3. Domains  of linear stability, bulk oscillations, and aperiodic instability in model (17). 
(Details in the text). (.-.) C =  3 x 10 -6 , ( - - )  C =  10 -5 , (- .-)  C =  3 x 10 5 
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Fig. 4. 
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~c< 1. If so, Turing bifurcation is impossible under normal conditions. 
Nevertheless, it is interesting to analyze the effect of tc on the spatial 
behavior of model (17). 

Figure 3 shows how the total catalyst concentration affects the boun- 
dary of linear stability of the system (17) on the (A, B) plane. In the shaded 
region the homogeneous steady state of the system is always linearly stable 
[-the boundary of the region is the line (~?f/~?x)@/~z- (c~f/Oz)~?g/~?x = 0]. 
Its position does not depend on C. The lines of Hopf bifurcation are given 
for three values of C. They limit the domains of bulk oscillations. In the 
area beyond the shaded region and the bulk oscillation region the Turing 
bifurcation can occur and this area gets large with decreasing C. Figure 4 
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Fig. 6. A small-amplitude stat ionary pattern for ~c = 1.5. Other  condit ions as for Fig. 5. 
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shows the influence of the parameter tr on the position of the line of the 
Turing bifurcation on the plane (A, B). The area of instability of the 
homogeneous state expands with increase of ~c. 

In what follows we consider a one-dimensional limited system with 
Neumann boundary conditions (impenetrable walls). The results are 
obtained either by direct integration of system (17) or numerical 
investigation of its stationary solutions (found with the Newton technique) 
and their stability. 

A stationary state diagram for the small-amplitude Turing structure is 
presented in Fig. 5 and the corresponding stationary pattern is shown in 
Fig. 6. In many cases, however, a large-amplitude pattern arises as a result 
of small perturbations of an initially homogeneous state (Fig. 7). Figure 8 
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Fig. 7. S t a t i o n a r y  per iod ic  pa t t e r n  of  large a m p l i t u d e  for A = 0 . 0 2 ,  B=0,192, C= 10 -5, 
h 0 = 1, ~,- = 25. 
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Fig. 8. Stationary state diagram for A =0.02, B=0.192 ,  C =  10 -5, h0= 1. 
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Fig. 10. 
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shows the bifurcation diagram for this case. The solid lines correspond to 
the stable solutions and the dashed lines correspond to the unstable 
solutions. The interval 2.7 < x < 20 is a bistability region where both the 
homogeneous state and the large-amplitude stationary pattern are stable. 
Figure 9 shows that a large-amplitude stationary structure can also exist 
for ~c < 1. However, in the case presented it is unstable. The asterisk marks 
the point where stability is lost. Such an instability can lead to the 
appearance of standing waves. 

Examples of standing waves are given in Figs. 10 and 11. The period 
of temporal oscillations of the standing wave rises with diminishing ~c and 
goes to infinity when K--* ~c2. Such behavior usually means that some 
analog of a homoclinic orbit exists in the system (17) at ~:2. Shilnikov(23 25) 
has shown that bifurcations of homoclinic orbit can give rise to mul- 
tiperiodic and irregular oscillations. Indeed, under certain conditions 
chaotic oscillations are observed in the system for ~c close to ~c2 (Fig. 12). 
Figure 13 shows the projection of the oscillations onto the plane (xL, x2), 
where xl is [HBrO2]  at the left reactor wall and x2 is [HBrO2]  at the 
right one. Next maximum and next minimum maps are given in Fig. 14. 
Figure 15 presents another chaotic pattern. 

To provide a deeper insight into a mechanism of standing waves 

'~~ 

Q 

Fig. 12. Chaotic oscillations at the left wall of the reactor. A = 0.0972, B = 0.15, C = 3 • 10 4, 
ho = 0.5, x = 1.632. 
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i t  

Fig. 13. Two-dimensional projection of the attractor for the motion illustrated by Fig. 12. 

Ln 

c~ 
L.. 

, ~ . : z  = 
�9 . . %  r ~  

112 
r 

! -- 

i 

-. j 

t e l  

I ~ ',"?- I t 
o.5 ~. ~.5 -7 -s -5  

Fig. 14. Next m a x i m u m a n d  next m i n i m u m m a p s f o r t h e  regime show in Fig. 12 (for the first 
80 peaks). 

822/'48/5-6-2 



972 Zhabotinsky and Rovinsky 

and chaotic oscillations, one may consider the ODE system that is a 
discretization of the PDE system (17): 

dx  i 1 + 1 
-~v = T f ( x i ,  zi) -ffi (xi l +- xi+ l - -  2Xi) 

~Z i K 
0--~ = g ( x , ,  z,)  + - ~  (z~ + z~ + ~ - 2z,) 

(18) 

where h is a space interval between two neighboring mesh points. 
Stationary solutions of system (18) were followed with a Newtonian 
iteration technique and the eigenvalues of the stationary states were 
calculated with the QR method. The stationary state diagram with bifur- 
cation points and oscillation region (~Cz, ~cl) is given in Fig. 16. The point 
~c~ is a point of Hopf bifurcation in the system (17), (18). As a result of the 
bifurcation the large-amplitude stationary periodic patern loses its stability 
and a standing wave with the same spatial period appears. When ~c 

V 

%:+ i 

Fig. 15. Spa t io t empora l  s t ructure  for A = 0.0965, B = 0.15, C =  3 x 10-4, h0 = 0.5, ~c = 1.6. 
Top left: [ H B r O 2 ]  osci l la t ions  at  the left end  of the reactor.  Vert ical  dashed  lines bound  the 
t ime interval  for which the s t ruc ture  on the m a i n  figure is shown. Time in terval  between two 

adjacent  profiles of the s t ruc ture  is 0.5 sec. 
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Fig. 16. Steady-state bifurcation diagram for A = 0.0972, B = 0.15, C =  3 x 10 -4, h0 = 0.5. A 
saddle point with the saddle number  S 1 = 0 is indicated by the asterisk. To the left of the 
asterisk the saddle points have positive S~. 

diminishes, the temporal period rises and goes to infinity. At •2 the limit 
cycle corresponding to the standing wave becomes a homoclinic orbit 
which goes from and returns to the saddle-focus stationary state marked in 
Fig. 16 with an asterisk. 

The bifurcation of a homoclinic orbit was studied in detail by 
Shilnikov.(23 ~5) He showed that its character strongly depends on saddle 
numbers. Let a saddle-focus have a single real, positive eigenvalue and a 
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Fig. 17. Eigenvalues of an ODE  system on the complex plane. 
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conjugate complex pair of eigenvalues closest to the imaginary axes in the 
left semiplane (Fig. 17). The saddle numbers are determined by the 
following expressions: 

$1 = Re 22,3 +21, $2=2 Re 22,3 + 21 

If $1 < 0, then a limit cycle bifurcates, but if $I > 0, the bifurcation is more 
complex. If at the same time $2 < 0, then in the vicinity of the bifurcation 
point in the parameter space an infinite sequence of multiperiodic motions 
exist, which are conected with period-doubling bifurcations. If $2 > 0, then 
the motion is quite unstable. 

4. CONCLUSION 

Thus, we have presented a model of the ferroin-catalyzed BZ reaction 
which quantitatively describes most of the experimental results. This model 
can be used to predict new effects and dynamic regimes. In particular, this 
model predicts that in the system, the interaction of reaction and diffusion 
can break the stability of the steady state and then stationary periodic 
structures, nonlinear standing waves, or chaotic spatiotemporal structures 
of large amplitude can appear in the system. One hopes that it will be 
possible to find a way of experimentally realizing these regimes. 
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